Similarities Between Co-evolution and Learning Classifier Systems and Their Applications
نویسندگان
چکیده
This article describes the similarities between learning classifier systems (LCSs) and coevolutionary algorithm, and exploits these similarities by taking ideas used by LCSs to design a non-generational coevolutionary algorithm that incrementally estimates fitness of individuals. The algorithm solves some of the problems known to exist in coevolutionary algorithms: it does not loose gradient and is successful in generating an arms race. It is tested on MAX 3-SAT problems, and compared to a generational coevolutionary algorithm and a simple genetic algorithm.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملA Comparison of Q-learning and Classifier Systems
Reinforcement Learning is a class of problems in which an autonomous agent acting in a given environment improves its behavior by progressively maximizing a function calculated just on the basis of a succession of scalar responses received from the environment. Q-learning and classifier systems (CS) are two methods among the most used to solve reinforcement learning problems. Notwithstanding th...
متن کاملA Brief History of Learning Classifier Systems: From CS-1 to XCS
The legacy of Wilson’s XCS is that modern Learning Classifier Systems can be characterized by their use of rule accuracy as the utility metric for the search algorithm(s) discovering useful rules. Such searching typically takes place within the restricted space of co-active rules for efficiency. This paper gives an historical overview of the evolution of such systems up to XCS, and then some of...
متن کاملEvolutionary Learning of Fuzzy Rules: Competition and Cooperation
We discuss the problem of learning fuzzy rules using Evolutionary Learning techniques, such as Genetic Algorithms and Learning Classifier Systems. We present ELF, a system able to evolve a population of fuzzy rules to obtain a sub-optimal Fuzzy Logic Controller. ELF tackles some of the problems typical of the Evolutionary Learning approach: competition and cooperation between fuzzy rules, evolu...
متن کامل